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Global Energy-Momentum Conservation in 
General Relativity 
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It is shown that there exists a family of coordinate systems in which the 
energy-momentum tensor is globally conserved. Furthermore, this preferred class 
of frames includes geodesic systems with respect to any arbitrary point or timelike 
geodesic line. This implies a physically satisfactory conservation law with no 
need to introduce an extraneous pseudotensor. 

1. I N T R O D U C T I O N  

A new approach to the problem of energy and its conservation in the 
f ramework of  general relativity has been recently proposed (Nissani and 
Leibowitz, 1988). The requirement that the energy-momentum be conserved 
plays a principal role in establishing the field equation of general relativity. 
It is, however, generally accepted that the covariant expression of the 
conservation law, i.e., the covariant divergencelessness condition imposed 
by Einstein's field equations 

T?f  = 0  (1) 

(Greek indices run from 0 to 4, and semicolon denotes covariant derivative) 
leads only to a local continuity equation, 

( v / -~  r ~ ) , ~  = 0 (2) 

valid in geodesic coordinates. Physically speaking, the local continuity 
equation is an expression of  a conservation law in a very limited sense, 
holding strictly only in an infinitesimal space-time region. 

The thrust of  the efforts in the conventional approach has been to 
convert this local continuity equation, valid only in a preferred system of 
coordinates, into a global condition valid in all systems of  coordinates. This 
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aim is accomplished by adding an adequate complementary gravitational 
energy-momentum pseudotensor (Einstein, 1916; Rosen, 1940; Landau and 
Lifshitz, 1951; Moiler, 1958; Goldberg, 1958; Komar, 1959; Cornish, 1964; 
Trautman, 1967; Penrose, 1982; Kovacs, 1985). Thereby a conservation law, 

(ff-~ r~ + t~).o = 0 (3) 

is obtained, which is globally valid in all coordinate systems. 
It is generally agreed that this approach has not led to satisfactory 

results (Maddox, 1985), suggesting renewed analysis of the fundamental 
assumptions underlying it. The goal to arrive at an equation of the type (3) 
derives from an implicit requirement of a separate general covariant con- 
servation law for each component of the total energy-momentum. (Here 
and subsequently the term "general covariant" is used in the sense of being 
valid in all systems of coordinates.) We first question the need for such a 
requirement, which seems to entail nontensorial character of the gravita- 
tional energy-momentum [see, however, Nissani (1984)]. In fact, there is 
an intrinsic contradiction between "tensorial components conservation" 
and "general covariance," due to the mixing of the components in a 
"rotating" system. Furthermore, it is mathematically impossible for a non- 
antisymmetric second-order tensor to satisfy a general covariant continuity 
equation, namely, an ordinary divergencelessness condition in all coordinate 
systems. 

In the already mentioned new approach a preferred class of coordinate 
systems is singled out. These systems are distinguished by the particular 
form the covariant divergencelessness condition (1) assumes in them. It 
transforms, when these special systems are utilized, into an ordinary diver- 
gencelessness condition valid through a finite region of spacetime. Thus, 
in these systems the energy-momentum tensor satisfies a global continuity 
equation in curved spacetime. Furthermore, there exists a nonempty inter- 
section of this class with the set of locally geodesic coordinates relative to 
an arbitrary observer. The members of this intersection constitute a doubly 
preferred family of coordinate systems, in which the laws of special relativity 
hold locally, while the energy-momentum is conserved globally. 

In the present paper the special coordinates, called "nonrotating," are 
analyzed further. First, a detailed proof of their existence is given. A way 
to construct such frames out of a given coordinate system is demonstrated, 
and the concept of "nonrotation" is elaborated. An explicit example of 
these frames is demonstrated for a wide range of curved manifolds. Par- 
ticular attention is given to the relationship between the nonrotating frames 
and the Newton inertial frames in flat spacetime. 

In the next section we will show the existence of this preferred class 
and in Section 3 its relation to the geodesic systems will be discussed. The 
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integral form of the globally valid conservation law for the energy- 
momentum is given in Section 4. In Section 5 the relationship between the 
nonrotating frames and the Newton fixed-star system is discussed. Section 
6 is devoted to concluding remarks, while the Appendix illustrates the 
existence of the geodesic nonrotating systems via a simple example. 

2. THE NONROTATING CLASS OF COORDINATE SYSTEMS 

The explicit form of the covariant divergencelessness condition for the 
energy4nomentum tensor, equation (1), is 

(4-~ T~),~ +,/-zg F~ T~ =0 (4) 

This equation differs from the continuity equation by the presence of the 
F term, which is generally interpreted as the manifestation of the interchange 
of energy-momentum between matter and gravitation. According to this 
viewpoint, various expressions for the gravitational energy have been pro- 
posed. All of them stem from the search for a general covariant continuity 
equation. In contrast, we suggest to interpret the term involving the connec- 
tions as the expression of the mixing of the components due to the "rotation" 
of the coordinate system. Consequently, we define as "nonrotating" systems 
those frames for which this term vanishes. That is, the systems for which 
the following constraint holds: 

F~vT ~ = F~,G ~' = 0 (5) 

(where G is the Einstein tensor), will be called nonrotating. 
This constraint implies a DeDonder-type condition 

o%,e = o 

and leads to the following differential equation for the transformation 
functions to a nonrotating system x ' (x ) ,  where equation (2) becomes globally 
valid: 

F,~ ~,~t30x'~'_ G,~tJ 02x'----~ = 0 (6) 
,~t~'.-" ax,~ Ox ~, Oxt3 

Notice that this equation has the same form as the differential equation 
defining the harmonic coordinates, in terms of which the metric tensor 
density has a vanishing ordinary divergence. It is also worthwhile to observe 
that this equation is consistent with the Mach principle, since the nonrotating 
character of the system is determined by the distribution of matter 
throughout space. Consequently, in an empty region of space, equation (6) 
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becomes an identity and the nonrotating coordinates are subject only to 
continuity conditions. 

Since the first term of equation (6) vanishes in a nonrotating system, 
the internal group of this preferred class of coordinates is defined by the 
D'Alembert-type equation 

0 2 X , ' r  

G ~ axC~ Ox ~ = 0 (7) 

Clearly, it includes the group of affine transformations, as should be expected 
on basic physical grounds. 

Suppose that (x) is one of these preferred systems. To gain more 
physical insight, we can assume, as will be shown in the next section, that 
the frame (x) is locally geodesic, too. Now, perform a global Lorentz 
transformation, e.g., a "rotat ion" of the form 

x '~ = y ( x  ~  

x,~ = , / (x  ~ - / 3 x  ~ 

X t2 = X 2 

X t3 = X 3 

where/3 is constant and y = 1/~/(-~--/32). Equation (5) remains valid in the 
new local geodesic nonrotating system (x'). The components of the energy- 
momentum in the (x') system, however, are linear combinations of those 
in the (x) system. Hence, if the global Lorentz transformation is replaced 
by a time-dependent one (with/3 being a function of  time), then, clearly, 
the energy-momentum components in this new "rotating" (x') system will 
be functions of time through/3, and undergo mixing with the passage of 
time. A nonvanishing F term expressing this mixing should appear. This 
fact supports our assumption that the F term is related to the rotating state 
of  the frame. 

3. THE NONROTATING GEODESIC SYSTEMS 

In this section we will see that among the geodesic systems with respect 
to a given line A there exists a subset of nonrotating systems. 

�9 Suppose that (x) is a geodesic system of  coordinates with respect to a 
timelike geodesic line A, namely 

r ~  = 0 (8) 

(the subscript A affixed to a variable denotes the restriction of the variable 
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to the curve A). Let 

OX ty AX i.~ 1 02x 'v �9 . 
- - 7 - - j l  x ' x  j +"  �9 �9 (9) 

X ' V = X ~ A + o x -  2 0 X  OX [A 

(Latin indices run from 1 to 3) be the Taylor expansion of a transformation 
function x ' ( x )  in the neighborhood of A, where we have taken x ~  = x~ 
and x~ = 0 for convenience. 

The coefficients in this series can now be determined so that (x') will 
be both geodesic and nonrotating. First notice that, due to equation (8), 
setting 

Ox ~ A = 8~ (10) 

and 

a2x'----[v A = O  (11) 
Ox i a x  j 

is tantamount to solving equation (6) along the line A. This choice establishes 
the geodesic nature of the (x') system with respect to the line A. Now, 
taking the values of the successive derivatives of both sides of equation (6) 
along the line A, we get a set of algebraic equations, which have to be 
satisfied by the coefficients of the third- and higher-order terms for (x') 
to be a nonrotating system. While it is not difficult to write down the 
conditions explicitly, we will omit this step here, as it is done in detail in 
the subsequent alternative derivation [equations (12)-(17)]. Of course, the 
coefficients obtained thereby are functions of the local values of the 
geometric parameters of space-time along the world-line A. 

Conversely, given a nonrotating but nongeodesic system (x), whose 
existence is guaranteed by the form of the differential equation (6), one 
applies a transformation of the internal group of the class of nonrotating 
systems, defined by equation (7), subordinate to the additional constraint 

oxrY tr 02XtY [ 

~X~ A F A'~I3 -- OX~ OXI3 , A 
(12) 

Then, according to the transformation law of the Christoffel symbols, the 
new coordinate system (x') will be nonrotating and geodesic with respect 
to the line A. The compatibility of condition (12) with equation (7) can be 
checked by observing that the contractions of both sides of equation (12) 
with the Einstein tensor G vanish as a consequence of equations (7) and 
(5), namely 

O2x"Y A-- m-~rv =0  (13) 
G ~  ~ Ox " a x e  -- ,-' A I A ~  



240 Nissani and Leibowitz 

To verify explicitly the existence of this transformation, let us write 
the transformation functions in the following form: 

Ox'~ o i 1 02X '~ A(xO)xJxk~_F~jk(X)xixJx k 
X 'a =X~(X0)~- W A(X )X "I-20xJ OX k (14) 

Where F~k replaces the terms of third and higher order of the Taylor 
expansion. First, the coefficients (OX"~/OX;)A and (02X"~/oxJoxk)A are 
required to satisfy equation (12), which entails the following two conditions: 

d [Ox 'a ] = Ox ta A(xO)F~Aoj(XO) (a) 
dx---'-6 i.-~-TxJ i A (x~ 7X---~ 

(15) 
O2X ,a OX ,~ 

(b) Ox- 70"--XJlA(X ~ = ~X ~ A(x~ ~ 

For each or, equation (15a) constitutes a system of three linked ordinary 
first-order differential equations for the three functions (Ox'/OX)A, while 
(15b) determines the second-order coefficients. On the other hand, the 
requirement that the transformation x'(x) belongs to the internal group, 
equation (7), imposes on the functions F the following condition [taking 
into account equations (15)] 

rox,-, o_ 7 ,  1 d 2 rox, , 
[dx~ " AFA'oJ x +-2~x~ IA J OX J 

2 3, "7 +oo, fOx' ' rox,-, 
t Oxcr A rAiO'~-~xO L ~  A r~Aij OXuOX' OX~ J 

Ox'3" ~o- 02F~mk l m  60F~kx;xk+6F~kxk}=o (16) }-GiJ [.Ox~ A I A i j ] - ~  XX xkq- OX' 

For each 3' it is a second-order differential equation for the ten functions 
F, so that a great deal of freedom still remains. 

Inquiring into the existence of analytic solutions, notice that since A 
is a geodesic line, i.e., F~oo=0, Eq. (16) can be written as 

:go) G"r ~ + xJH~r162 =0  (17) 

The second term in equation (17) vanishes for x j =  0. Consequently, the 
condition for the existence of analytic solutions for H is precisely equation 
(13); thereby the convergence of the Taylor expansion (14) is guaranteed 
in an appropriate neighborhood of the point or line A. 
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4. INTEGRAL CONSERVATION LAWS 

In the usual manner we obtain from the ordinary divergencelessness 
condition (2), holding globally in nonrotating systems of coordinates, that 

dt x / ~  T ~~ dx = - ~ T ~ do'~ (18) 

where V is an arbitrary spatial volume with boundary s Now if the volume 
integration is performed over an isolated system, so that the energy- 
momentum tensor vanishes over the surface boundary during the lapse of 
time from tl to t2, we get that the volume, integrals at the times tl and t2 
are strictly equal: 

P~(tl)=I x/-~T~~ [ = f  x / ~ T ~ ~  =P~(t2)  (19) 
~) t 1 1) t 2 

Furthermore, if the system of  coordinates employed is in addition locally 
Lorentzian (the existence of  such frames has been demonstrated above), 
these integrals give the values of  the energy-momentum affine 4-vector as 
normally measured in the laboratory. 

The existence of the nonrotating-geodesic systems, where equation (19) 
is valid, is a mathematical fact derived from the Einstein field equation 
without any additional assumption. On the other hand, the question of 
whether the conserved energy-momentum defined thereby does or does not 
include a gravitational contribution depends on the physical interpretation 
of T. 

Note that, unlike the case of a nonrotating geodesic system, in an 
ordinary geodesic system of coordinates, equation (19) holds only approxi- 
mately over a finite volume. 

5. THE FLAT SPACETIME APPROXIMATION 
(OR THE NEWTON FIXED-STARS SYSTEM) 

In order to find a connection between the concept of "nonrotating 
frame" as defined above and the conventional notion of nonrotating system 
in special relativity (Newton's "fixed-stars frame"),  we now consider a 
special case similar to the example analyzed in the Appendix. Let us assume 
that the energy-momentum tensor is composed of: (a) a laboratory experi- 
mental setup such as oscillating small spherical masses attached to springs. 
The gravitational affect of  this experimental setup will be neglected in our 
approximation procedure; and (b) massive stars distributed in space far 
away from our experimental setup, which will be considered as point masses. 
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Under these conditions the energy-momentum tensor will be expressed 
by 

1 ~H 6[x,_x~(xO)]MiU,~(xO)U~(xO ) (20) T~t 3 = T :  t3 +~--~_g 

where i runs over stars, j runs over the three spatial coordinates, x ~ is the 
temporal coordinate, and Ts denotes the energy-momentum tensor of the 
experimental setup. 

To gain insight into the nature of the nonrotating systems under these 
conditions, consider first the zero approximation, where the Ts term is 
ignored entirely. Then the physical system under consideration reduces to 
a special case of the example studied in the Appendix. We may, therefore, 
make use of  the result obtained there, namely, that a necessary and sufficient 
condition, in this case, for a coordinate system to be nonrotating is equation 
(A1), 

Ua, U =0  

In the present case, however, U ~" depends on X ~ only, and the last condition 
becomes 

U ~ = 0  

which states that, in this configuration, a frame is nonrotating if and only 
if the stars are a .rest, or in uniform motion, with respect to it. 

Now let us take into account the laboratory system, which is assumed 
to be small in its spatial dimension and traces a certain geodesic path in 
spacetime. Denote the laboratory geodesic world-line by A, and consider 
again the zero approximation and a nonrotating frame S identified there. 
In view of the general construction presented in Section 3, there exists a 
coordinate t ransformation--member of the internal group of  the class of  
nonrotating systems--which transforms the nonrotating frame S into 
another nonrotating frame S' which is geodesic with respect to the line A. 
It is now easy to see that S' is a nonrotating frame for the physical situation 
under consideration, namely, with the full T given by equation (20), for in 
the zone of  the faraway stars the two situations, with and without Ta, are 
indistinguishable, while in the neighborhood of  the geodesic line A (in our 
approximation Ts does not affect the geometry of  spacetime, so that the 
geodesic lines in the two situations are identical) the energy-momentum 
tensor satisfies approximately an ordinary divergenceless condition. Hence 
in the S' frame T satisfies globally 

( 4 - ~  T~ = o 

which defines S' as a nonrotating frame. 
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In conclusion, the geodesic-nonrotating frames introduced in this paper 
are in the flat-space approximation none other than Newton's fixed-stars 
systems, whereby locally Newton's laws of motion are valid (geodesic 
frames) and the stars are at rest or in uniform motion. 

6. CONCLUSION AND REMARKS 

The problem of conservation of energy in general relativity has been 
discussed based on a coordinate approach. 

It has been demonstrated that there exists a class of preferred coordinate 
systems, the nonrotating frames, in which an ordinary continuity equation 
for the energy-momentum tensor holds globally. These preferred frames 
are determined exclusively by the distribution of energy-momentum 
throughout space-time. 

The existence of this preferred class of  frames entails the conservation 
of  spatial integrals of the energy-momentum. Furthermore, for a given 
observer tracing a timelike geodesic curve in space-time, a subset of  the 
class of nonrotating frames will be geodesic with respect to that observer. 
Measured in these coordinate systems, the conserved integrals correspond 
to the physical quantities interpreted as the total energy-momentum of the 
system under consideration. Thus, with the aid of the nonrotating frames, 
the conservation of energy is established in a physically meaningful manner, 
with no need to introduce an extraneous pseudotensor. The global conserva- 
tion of the energy-momentum tensor established in the present paper is an 
indication that this tensor represents the total energy-momentum, including 
the gravitational contribution. 

Finally, it is worth stressing that the existence of a preferred class of 
coordinates is an experimental fact. Since the Newton water bucket clearly 
distinguishes between rotating and nonrotating frames, it is obvious that in 
special relativity the energy-momentum is conserved only in these physically 
preferred "nonrotat ing" frames selected by Newton's bucket. It should, 
therefore, come as no surprise that  in curved spacetime, too, the energy- 
momentum is conserved only in a preferred class of frames. 

APPENDIX: AN EXAMPLE 

As a concrete realization of the foregoing discussion, consider the 
special case of  a dust cloud characterized by a proper density p ( x )  and 
4-velocity u ~ ( x )  in a region of space-time with any arbitrary metric compat- 
ible with the presence of  the dust. The underlying energy-momentum tensor 
is 

T~V = pu~,u v 
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where p is a scalar and u ~ is a unit vector. Notice that any possible direct 
contribution of the gravitational energy to T is neglected (compare with 
the remark in Section 6). 

The divergencelessness condition on T ~'~ implies 

p u ~ u  ~ + u" (pu~) ;~  = 0 

which, upon contraction with u~, yields 

(pu~);~=0 

Substituting back, one finds 

o r  

U;,,U = 0  

~' a - 1 P u  T " y = O  U,vU + r  - v ~ - -  

Hence, a coordinate system in the situation under  consideration is a nonro- 
taring frame if and only if the 4-velocity u ~ satisfies 

u~u~=O (A1) 

In particular, a "comoving f rame" defined by 

u '~ = 8~ 

is necessarily nonrotafing. Notice that in such frames one has 

r~o=0  

In view of  equation (7) for the internal group, the most general nonrotat- 
ing system x' is obtained from the comoving frame x by the transformation 

x '~ = x ~  k) + B g ( x  k) (A2) 

where A" and B '~ are arbitrary functions of  the coordinates x 1, x 2, x z. For 
x '  to be in addition a geodesic system with respect to a given point or line 
A, the functions A" and B '~ must be subordinate to the constraint (12), viz., 

/ . L  - -  A,klA -- F~ok 

x~ .j + B ~..I-,,,J,,~ = F ~ k j  

[equation (12) for ot =/3 = 0 is satisfied identically]. 
It is evident, then, that by an appropriate  choice of  the functions A ~ 

and B ~, the transformation (A2), applied to a comoving frame, yields a 
nonrotating system geodesic with respect to the given point or line. 
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